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Abstract We examined the variations of bacterial popu-
lations in treated drinking water prior to and after the final
chlorine disinfection step at two different surface water
treatment plants. For this purpose, the bacterial communi-
ties present in treated water were sampled after granular
activated carbon (GAC) filtration and chlorine disinfection
from two drinking water treatment plants supplying the city
of Paris (France). Samples were analyzed after genomic
DNA extraction, polymerase chain reaction (PCR) ampli-
fication, cloning, and sequencing of a number of 16S
ribosomal RNA (rRNA) genes. The 16S rDNA sequences
were clustered into operational taxonomic units (OTUs)
and the OTU abundance patterns were obtained for each
sample. The observed differences suggest that the chlorine
disinfection step markedly affects the bacterial community
structure and composition present in GAC water. Members
of the Alphaproteobacteria and Betaproteobacteria were
found to be predominant in the GAC water samples after
phylogenetic analyses of the OTUs. Following the chlorine
disinfection step, numerous changes were observed,
including decreased representation of Proteobacteria
phylotypes. Our results indicate that the use of molecular
methods to investigate changes in the abundance of certain
bacterial groups following chlorine-based disinfection will
aid in further understanding the bacterial ecology of
drinking water treatment plants (DWTPs), particularly the
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disinfection step, as it constitutes the final barrier before
drinking water distribution to the consumer’s tap.
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Introduction

The introduction of water treatment for safe use was one of
the great achievements of the 20th century. The widespread
use of water filtration, followed by disinfection, led to a
drastic reduction of infectious disease outbreaks associated
with contaminated water [38]. Nonetheless, rapid industrial
development, intense agronomic practices, and human
demographic changes have resulted in augmented con-
tamination of natural water systems that has challenged the
performance of water treatment facilities.

Source water for drinking water production is provided
by natural lakes and rivers, manmade reservoirs, and
groundwater, depending upon the regionally available
freshwater resources. Modern drinking water treatment
plants (DWTPs) employ various procedures, including
coagulation, flocculation, filtration, and disinfection,
depending on source water quality [47]. Previous studies
have shown that bacterial diversity in drinking water can be
affected by differences in type of source water and treat-
ment processes used in DWTPs [11, 19, 41]. As surface
water quality can be affected by a variety of events, such as
stormwater runoff or pollution, the treatment processes
tailored for groundwater and surface water treatment plants
generally differ [22, 47].

In order to reduce organic compound contamination,
granular activated carbon (GAC) filtration is often the step
preceding the final disinfectant addition step in DWTPs.
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GAC filters, a porous media, can accumulate organic
nutrients that support bacterial growth and thus metabolism
of most remaining contaminants [7, 30, 41, 45]. Bacteria
isolated and cultivated from GAC filters have been iden-
tified as belonging to a variety of genera, including
potential human pathogens [7, 31, 41, 48].

To ensure the microbial quality of drinking water from
treatment plant to consumer tap, a final treatment step of
disinfection is performed on the GAC effluent water in
order to reduce the number of pathogens in the processed
water to an acceptable level and to limit microbial growth
in the drinking water distribution system (DWDS). In this
step, a disinfectant, commonly chlorine or chloramine, is
added and subsequently maintained at a minimal residual
concentration along the length of the DWDS. Disinfection
represents the final step before water entry into the DWDS
and thus plays an important role in determining the com-
position of the bacterial population of finished drinking
water [11, 34]. Even in the presence of an extremely potent
bactericidal agent such as chlorine, certain bacteria can
survive the disinfection procedure. For example, bacterial-
colonized GAC particles discharged into the process
effluent have been shown to increase resistance to disin-
fectants and thus lead to the release of bacteria, attached to
carbon fines, into the drinking water [8, 26, 29, 41].
Intrinsic resistance to disinfectants commonly used to treat
drinking water has also been demonstrated, using cultiva-
tion methods, for some members of the Mycobacterium and
Bacillus genera, as well as certain Gram-negative bacterial
species [14, 24, 33, 36].

After disinfection treatment, remaining bacteria released
into the DWDS may interact with microbial populations
present in the water distribution network and be involved in
biofilm growth, nitrification, microbial-mediated corrosion,
and pathogen persistence [5, 27]. As a consequence,
knowledge of the bacterial ecology in the DWTPs is of
prime concern for drinking water producers, since the
presence of certain bacteria can be a source of water
quality problems in the downstream DWDS. Moreover, the
appearance of “emerging pathogens” in drinking water has
arisen as a new challenge for water and public health
authorities. These “emerging pathogens” include species
of environmental bacteria that can survive within the
DWDS, and comprise a number of opportunistic patho-
gens, such as Legionella sp., Aeromonas sp., Mycobacte-
rium sp., and Pseudomonas aeruginosa, among others [42].

The use of cultivable microbial indicators is required by
regulation to assess the biological effectiveness of the
treatment processes and quality of finished drinking water.
Laboratory experiments, using plate count techniques, have
also been used to assess bacterial behavior to disinfectant
exposure [14, 24, 33]. Although these cultivation tech-
niques have proven their efficacy in the past, new microbial
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risk-assessment methods are clearly needed [6, 17], as
bacterial culture methods are now known to significantly
underestimate the bacterial diversity in drinking water [42].
Molecular methods, based on the amplification and
sequencing of the small subunit 16S ribosomal RNA genes
(SSU 16S rDNA), have made it possible to study microbial
populations independently of cultivation [2]. The use of
such 16S rDNA-based approaches conducted on fully
functioning surface water DWTPs can provide valuable
information on bacterial population changes prior to and
after chlorination; for example, a recent 16S rDNA analysis
within a groundwater-based DWTP revealed that members
of the class Betaproteobacteria considerably decreased
following the chlorine disinfection treatment [23].

The aim of this study was to assess the bacterial groups
present in water after GAC filtration and following chlo-
rination in two DWTPs that use similar treatment processes
on different surface water sources (the Marne and Seine
rivers) to supply drinking water for the city of Paris,
France. For each sample, genomic DNA was extracted and
the 16S rRNA genes amplified, followed by DNA
sequencing of 439 cloned amplification products. Phylo-
genetic analyses were performed on the 16S rDNA
sequences retrieved from the samples, and taxonomic
profiles were obtained for each community. Using this
approach, we identified numerous changes in bacterial
diversity, including at the levels of both taxa richness and
evenness, which occurred after the final disinfection step.

Materials and methods

Water sampling of the two surface water treatment
plants

The two DWTPs, located near the towns of Ivry-sur-Seine
and Joinville-le-Pont, treat surface water retrieved from the
Seine and Marne rivers, respectively, based on biological
slow sand filtration [35]. Surface water is first subjected to
preozonation, and then filtered through Biolite after the
injection of ferric chloride and polyelectrolyte, resulting in
contact coagulation. Water is successively filtered through
rapid sand filters and biological slow sand filters. After
ozonation, followed by GAC filtration, a final disinfection
step to produce finished drinking water is carried out by the
addition of sodium hypochlorite (free residual chlorine:
>0.5 mg/l after 30 min contact time) and followed by the
addition of phosphoric acid to inhibit lead pipe corrosion in
the DWDS (residual concentration: >1 mg/l).

Granular activated carbon filtered water and finished
drinking water from each DWTP were sampled on June 30
and July 1, 2008 from the Joinville-le-Pont and Ivry-sur-
Seine sites, respectively, and processed as previously
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described [35]. Briefly, water was collected using sterile 1-1
bottles containing 20 mg sodium thiosulfate to inactivate
residual chlorine and ozone. Samples were transported on
ice and processed within 4 h after collection. Microor-
ganisms were harvested by filtering 12 1 water through a
0.2-pum-pore-size nylon filter (47 mm diameter, Millipore,
Molsheim, France) and the filters were stored at —70°C
until use.

Nucleic acids extraction and purification

Nucleic acids were extracted from the frozen filters as
previously described [35]. As nucleic acids extracted from
the GAC samples were found to contain significant
amounts of RNA, known to cause problems in PCR reac-
tions [44], the extracted nucleic acids from all samples
were treated with 50 U RNase I (Fermentas, Saint-Remy-
les-Chevreuse, France) for 10 min at 37°C. The nucleic
acids were then purified by chloroform/isoamyl alcohol
extraction, precipitated with ethanol, and resuspended in
0.1x TE buffer, as previously described [35]. The purified
nucleic acids were visualized by electrophoresis through a
0.8% agarose gel in TAE buffer (20 mM Tris—acetate pH
8, 5 mM Na-EDTA) and stored at —20°C until use.

Small subunit rRNA gene library construction

The 16S rDNA sequences were amplified from DNA
samples using the primers 517F (5-GCCAGCAGC
CGCGGTAA-3") and 1407R (5-GACGGGCGGTGTGT
RC-3") [50]. The PCR reactions (five per sample, to avoid
single-tube amplification bias) were carried out in 50 pl
total final reaction volumes using 10 ng DNA template,
0.25 uM phosphorylated primers (Sigma—Aldrich, Lyon,
France), 0.2 mM dNTP mix (Fermentas, Saint Remy Les
Chevreuses, France), 1x Phusion HF buffer (Ozyme,
Saint-Quentin-en-Yvelines, France) with 1.5 mM MgCl,
and 0.5 U Phusion DNA polymerase (Ozyme, Saint-
Quentin-en-Yvelines, France). The conditions of amplifi-
cation were: 2 min at 98°C followed by 25 cycles for 20 s
at 98°C, 30 s at 54°C, 20 s at 72°C, and a final elongation
step for 5 min at 72°C. The amplified fragments were
purified using the Nucleospin Extract II kit (Macherey—
Nagel, Hoerdt, France) after electrophoresis through a
0.8% agarose gel in TAE buffer. Then, the purified DNA
fragments were cloned into the pSmartLCKan vector
(Lucigen, Middleton, USA) as recommended by the man-
ufacturer. Plasmids containing 16S rDNA-sized inserts
were isolated using the Nucleospin Multi-96 Plus Plasmid
kit (Macherey—Nagel, Hoerdt, France) and sequenced by
Cogenics-GENOME Express (Grenoble, France) using
vector primers.

16S rDNA sequence and phylogenetic analyses

After sequencing of selected cloned inserts, chimeric 16S
rDNA sequences were removed after examination using the
Bellerophon [18] and Pintail [3] programs. The remaining
sequences retrieved from all samples were aligned using
the NAST program [10], manually refined with Bioedit
version 7.0.0 [16], and then a corrected distance matrix
(F84 model) was generated using the DNADIST ver-
sion 3.5¢ program from the PHYLIP package [13] imple-
mented in Bioedit. The generated distance matrix was used
as an input file for DOTUR version 1.3 [37]. The DOTUR
program was used to group sequences into defined single
operational taxonomic units (OTUs) using a >97%
sequence similarity threshold [40], and to calculate total
OTU richness (Chaol estimates). Representatives of each
OTU were selected and subjected to a phylogenetic anal-
ysis. In total, 168 16S rDNA sequences were used as a
BLAST query [1] against 16S rDNA sequences present in
the GenBank and Ribosomal Database Project II databases
[4, 9]. The closest matching sequences were retrieved from
the databases and aligned with the cloned sequences using
NAST, and then manually refined with Bioedit. The
bootstrapped (100 replicates) phylogenetic trees were
generated with MEGA version 4 [43] using the neighbor-
joining and maximum-likelihood methods. The 16S rDNA
sequences determined in this study have been deposited
in the GenBank database under accession numbers
GQ452964 to GQ453402.

Results
OTU abundance patterns

Water samples were collected from the GAC filter effluent
and after the final chlorine disinfection step of the treat-
ment process from the two DWTPs. The bacteriological
and chemical analyses of the water sources (Seine or
Marne rivers) used by the DWTPs, and the GAC effluents
plus finished drinking water samples, are presented in
Table 1. Although the samples collected at the two water
sources did not display major differences, the results did
reveal higher total coliforms and Escherichia coli numbers
in the Seine river and higher levels of NH, in the Marne
river (Table 1).

A 16S rDNA library was generated for each sample and
439 total sequences were analyzed after removal of chi-
meric sequences. The 16S rDNA libraries were designated
I-GAC and I-DW, for the Ivry-sur-Seine GAC and finished
drinking water samples, respectively, and J-GAC and
J-DW, corresponding to the Joinville-le-Pont GAC and
finished drinking water samples, respectively. In order to
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Table 1 Summary of water quality at the time of sampling

Parameter measured Site

Ivry-sur-Seine

Joinville-le-Pont

Seine river GAC DW Marne river GAC DW
Temperature (°C) 24.0 26.9 23.3 274 249 24.8
pH 8.15 7.70 7.47 8.20 7.95 7.90
Turbidity (NFU)? 7.69 0.042 0.046 8.30 0.035 0.028
TOC (mg/1)° 2.52 1.46 1.57 1.96 1.19 1.39
Free chlorine (mg/l) - - 0.54 - - 0.72
Total chlorine (mg/1) - - 0.62 - - 0.79
NH, (mg/l) 0.03 <0.01 <0.01 0.09 <0.01 <0.01
NO, (mg/l) 0.070 <0.005 <0.005 0.060 <0.005 <0.005
E. coli (/100 ml)° 3,000 0 0 1,180 0 0
Total coliforms (/100 ml)° 8,000 0 0 2,334 0 0

measure the potential bacterial richness and abundance
within each sampled library, the 16S rDNA sequences with
>97% sequence similarity were clustered into operational
taxonomic units (OTUs) and the OTU abundance pattern
was determined by ranking and plotting the relative
abundance data for each sample (Fig. 1). The results yiel-
ded 28, 33, 73, and 55 distinct OTUs in the J-DW, I-DW,
J-GAC, and I-GAC samples, respectively. The finished
drinking water samples were found to contain several
abundant (each accounting for >10% of the population)
OTUs representing 22%, 18.9%, and 12.1% of the total 16S
rDNA sequences in the J-DW sample and 23.8%, 13.3%,
and 12.4% of the total 16S rDNA sequences in the I-DW
sample (Fig. 1). In contrast, less than 10% of the total
sequences could be classed as “abundant OTUs” in the
GAC effluent samples, suggesting a more uniform popu-
lation structure. In support of this, we found that the fre-
quency of single-represented sequenced clones accounted
for 10.6% and 16.2% of the 16S rDNA sequences in the
J-DW and I-DW samples, respectively, versus 53.9% and
79.5% of the 16S rDNA sequences in the I-GAC and
J-GAC samples, respectively (Fig. 1). Moreover, species
diversity based on Chaol estimates indicate a total OTU
richness projected to be 43 (J-DW) and 62 (I-DW) for the
finished drinking water samples, and 238 (J-GAC) and 125
(I-GAC) total OTUs in the GAC effluent samples.

Phylogenetic analyses

Representatives of each OTU were subjected to a phylo-
genetic analyses (Figs. 2, 3, 4). In the GAC samples, a
variety of the OTUs were found to belong to the Proteo-
bacteria phylum (Figs. 2, 3). The Alphaproteobacteria-
affiliated OTUs were found to be clustered into 21 and 29
OTUs in the I-GAC and J-GAC samples, respectively,
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whereas only 2 (J-DW) and 5 (I-DW) Alphaproteobacteria-
affiliated OTUs were discerned in the finished drinking
water samples (Fig. 2). The assigned Alphaproteobacteria
sequences were found to be affiliated to a variety of taxa,
including members of the Sphingopyxis, Brevundimonas,
Hyphomicrobium, Methylocystis, Bradyrhizobium, Rickett-
sia, and Acidisphaera genera. Within the class Betaprote-
obacteria, 17 distinct OTUs were identified in the GAC
samples. Among these were members belonging to the
Methylibium, Polaromonas, Comamonas, Herminiimonas,
Polynucleobacter, and Methylophilus genera (Fig. 3a), and
including the J-GAC-19 and J-GAC-17 OTUs found to be
closely related to 16S rDNA sequences (sequences with a
BAC prefix in Fig. 3a) retrieved from cultivated bacteria
previously isolated from GAC filters [31]. OTUs affiliated
to the Gammaproteobacteria were represented only by
members belonging to the genus Legionella and were only
observed in the GAC samples (Fig. 3b). The phylogenetic
analyses also revealed the presence of OTUs belonging to
the class Deltaproteobacteria, some of which were found to
be related to members of the genus Bdellovibrio (Fig. 3c).

Phylogenetic analyses of the OTUs retrieved from the
chlorinated finished drinking water samples showed that
members belonging to nonproteobacterial groups were
numerous in both finished drinking water samples (Fig. 4).
The most frequently observed OTUs in the I-DW and J-
DW samples were found to be closely related to those
(sequences with an HOCI or Ivry prefix in Fig. 4) previ-
ously observed in other drinking water samples [35, 49].
More precisely, the I-DW-87 (representing 25 clones in the
J-DW and I-DW samples) and J-DW-46 (representing 29
and 6 clones in the J-DW and I-DW samples, respectively)
OTUs were affiliated to currently unclassified bacteria
(Fig. 4). Within the Bacteroidetes, all OTUs were capable
of being placed into the orders Sphingobacteriales and
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Fig. 1 Rank abundance plots of OTUs from each sampled library: a GAC and b finished drinking samples from Ivry-sur-Seine; ¢ GAC and

d finished drinking water samples from Joinville-le-Pont

Flavobacteria and some of these were found to be closely
related to 16S rDNA sequences affiliated to the genera
Terrimonas and Chryseobacterium (Fig. 4). The I-DW-24
and I-DW-11 OTUs, represented by 14 and 13 clones,
respectively, were found to be highly related to Myco-
bacterium salmoniphylum (99.8% sequence similarity) and
Mycobacterium llatzerense (100% sequence similarity)
(Fig. 4). Eight OTUs retrieved from the finished drinking
water sample from the Joinville-le-Pont DWTP were
identified as belonging to the Planctomycetes phylum
(Fig. 4). The remaining sequences from the samples were
scattered over a wide taxonomic distribution, including
members belonging to the phyla, Acidobacteria, Chlamy-
diae, Verrucomicrobia, Nitrospira, Firmicutes, and
Cyanobacteria.

Taxonomic composition

The percentage of 16S rDNA sequences affiliated to the
major bacterial taxonomic groups present in each sample is
shown in Fig. 5. The results revealed that the total
sequenced clones affiliated to the Proteobacteria phylum
accounted for 15.5% and 18.4% of the 16S rDNA
sequences in the J-DW and I-DW samples, respectively,
with a significantly higher proportion (81.5% for J-GAC
and 71.1% for I-GAC) observed in the GAC samples
(Fig. 5). At least 50% of the clones retrieved from the
I-GAC and J-GAC samples were assigned to the classes
Betaproteobacteria and Alphaproteobacteria, whereas in
the finished drinking water samples, only 16.9% (I-DW)
and 2.2% (J-DW) of the clones were affiliated to these
proteobacterial classes (Fig. 5).

Among the other Eubacterium phyla, both the J-DW and
I-DW samples contained a large proportion (51.5% and
35.9%, respectively) of 16S rDNA clones belonging to a
bacterial group composed of currently unclassified mem-
bers. Sequences affiliated to the phylum Bacteroidetes
were observed at higher frequencies in the finished drink-
ing water samples than in the GAC water samples from
both sampled sites (Fig. 5). We observed an increased
abundance of sequences affiliated to the phylum Actino-
bacteria between the I-GAC (1.3%) and I-DW (23.7%)
samples, yet no member of this phylum was observed in the
Joinville-le-Pont samples. In the J-DW sample, members of
the Planctomycetes were found to account for 21.3% of the
observed bacterial population (Fig. 5).

Discussion

The aim of the present study was to investigate bacterial
community changes in processed water after the disinfec-
tion step in two surface water treatment plants using a 16S
rDNA-based approach to overcome cultivation-based lim-
itations. We examined the bacterial community composi-
tion of treated water samples taken at the end of the GAC
filtration step and after chlorine-based disinfection from the
Ivry-sur-Seine and Joinville-le-Pont DWTPs that use sim-
ilar treatment processes but different raw water sources
(Marne and Seine rivers).

Microbial cells were collected from water samples by
filtration, DNA was extracted, and the 16S rRNA genes
amplified by PCR. After clone library construction,
sequenced 16S rRNA genes were grouped into OTUs using
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indicate the occurrence of a specific OTU in the different 16S rDNA
sampled libraries as follows: green, I-GAC sample; blue, I-DW
sample; brown, J-GAC sample; and red, J-DW sample. The tree was
rooted using Microcystis aeruginosa as an outgroup
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indicate the occurrence of a specific OTU in the different 16S rDNA
sampled libraries as indicated in the legend to Fig. 3. Arrows indicate
the most abundant OTUs present in the [-DW and J-DW samples. The
tree was rooted using Sulfolobus metallicus as an outgroup
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Fig. 5 Taxonomic abundance of 16S rDNA sequences from each sampled library: a GAC and b finished drinking water samples from Ivry-sur-
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a >97% sequence similarity threshold. The OTU richness
identified in the finished drinking water libraries [28 (J-
DW) and 33 (I-DW) OTUs] was found to be less than that
observed in the GAC water samples [55 (I-GAC) and 73 (J-
GAC) OTUs]. The Chaol calculations indicate an overall
estimated total OTU richness of 43 (J-DW) and 62 (I-DW)
OTUs in the finished drinking water samples, whereas 125
(I-GAC) and 238 (J-GAC) OTUs were estimated to be
present in GAC water samples. These results, not surpris-
ingly, show a decrease in bacterial richness present in the
treated water following the disinfection step, a result con-
sistent with previous studies [23, 34] and in accordance
with the known biocide effects of adding uncombined
chlorine in the form of hypochlorous acid (HOCI). Our
results also show the presence of several dominant OTUs
in the finished drinking water samples from both the Ivry-
sur-Seine and Joinville-le-Pont samples, whereas this
dominance was not observed in the corresponding GAC
effluent samples. An explanation for these bacterial even-
ness changes following the disinfection treatment is likely
attributable to a differential level of sensitivity of bacterial
taxa present in the GAC water to the chlorine disinfectant
[24, 32].

At the end of GAC filtration, the bacterial population
was found to be dominated by a variety of low abundance

OTUs, mainly affiliated to the Alphaproteobacteria and
Betaproteobacteria classes in both the I-GAC (71.1%) and
J-GAC (81.5%) samples (Figs. 2, 3a). These results are
consistent with those obtained using cultivation methods
on GAC effluent samples, as the colonies identified as
belonging to the genus Pseudomonas are presently classi-
fied within the Proteobacteria phylum, and mainly affili-
ated to the Alphaproteobacteria and Betaproteobacteria
classes [21, 34, 41]. By identifying the predominant cul-
tivable bacteria within GAC filters from different full-scale
DWTPs, Magic-Knezev et al. (2009) also found that most
bacteria belonged to the Alphaproteobacteria and Beta-
proteobacteria classes, suggesting that these types of bac-
teria, or their nucleic acids, may persist up until this step in
the DWTPs.

Following the chlorine disinfection step, reduced num-
bers of Proteobacteria-affiliated clones, particularly
marked for the Alphaproteobacteria and Betaproteobacte-
ria classes, were encountered in both the J-DW (15.5%)
and I-DW (18.4%) samples (Fig. 5). It has been previously
noted that members of the Beraproteobacteria can be
particularly sensitive to chlorine disinfection [23, 49].
Members of the Proteobacteria have, in contrast, been
previously observed to be abundant in some samples of
finished drinking water [35] or in planktonic bacterial
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populations of downstream chlorinated drinking water
within an urban DWDS [49]. These differences can be
accounted for by differences in the location of different
drinking water networks, source water quality [11] or by
physicochemical effects, such as water temperature, on the
efficiency of chlorine treatment [20, 24]. In addition, the
presence of microbial biofilms, including members of the
genus Sphingomonas [39], on the pipe surfaces within a
DWDS, and subsequent release of biofilm-attached bacte-
ria into the bulk water phase, may also affect the planktonic
bacterial diversity observed in drinking water [28].

The 16S rDNA sequences affiliated to an unclassified
bacterial group, as well as members of the Bacteroidetes,
Planctomycetes, and Actinobacteria phyla, constitute the
most abundant bacterial lineages observed in the finished
drinking water samples (Fig. 5). Phylogenetic analyses of
clones examined in the I-DW and J-DW samples revealed
that the highest abundance OTUs, affiliated to the unclas-
sified bacteria observed in the I-DW and J-DW samples,
were identical (Fig. 4) and closely related to those
observed in previous studies [35, 49], suggesting that these
bacteria may form part of the microbiota present in chlo-
rinated drinking water. The Bacteroidetes, identified in
higher abundance after the disinfection step in both the I-
DW and J-DW samples, were found to be represented by
members of the Sphingobacteriales and Flavobacteria
orders (Fig. 4). Members of the Bacteroidetes (previously
known as Cytophaga—Flavobacterium—Bacteroides) are
frequently isolated in aquatic environments [52]. Flavo-
bacterium species have been reported to display a high
degree of resistance to chlorine treatment and be readily
isolated from disinfected drinking water [41, 51]. Members
belonging to the Planctomycetes phylum were found to
represent 21.3% of the total 16S rDNA sequences retrieved
in the J-DW sample (Fig. 5), a result in accordance with
previous studies, as members of the phylum Planctomy-
cetes have been consistently identified in chlorinated
drinking water [11, 23, 35]. Members of the Actinobacteria
were found in the I-GAC (1.3%) and I-DW (23.7%) sam-
ples (Fig. 5). The phylogenetic analyses indicate that the
OTUs affiliated to the genus Mycobacterium within the
Actinobacteria in the Ivry-sur-Seine finished water sample
were highly related (>99%) to Mycobacterium salmoni-
phylum and Mycobacterium llatzerense (Fig. 4). Whereas
Mycobacterium salmoniphylum has been considered as a
Mycobacterium chelonae-like organism isolated from sal-
monid fishes, Mycobacterium llatzerense was isolated from
hemodialysis water [15, 46]. The significance of their
presence is not currently discernible. The presence of
Mycobacteria in drinking water, and specifically in the
DWTP of Ivry-sur-Seine, has previously been reported [12,
25]. Moreover, members of the genus Mycobacterium have
been found to be resistant to chlorine treatment, and some

@ Springer

species (e.g., Mycobacterium tuberculosis) are known to be
pathogenic for humans [24, 25]. No 16S rDNA sequences
capable of being affiliated to the genus Mycobacterium
were identified in the Joinville-le-Pont DWTP samples, a
result possibly due to quantitative differences in their
presence in the two source waters used and/or slight
functional differences between the two DWTPs [12]. It
should be noted here that it is not possible to determine if
the bacteria that we identified represent dead or live cells.
Although a 16S rDNA-based analysis allows bacterial
identification in the absence of cultivation-based bias, the
significance of the bacterial groups detected in this study
clearly requires much further research.

The results reported here support the notion that chlo-
rination plays an important role in the bacterial populations
of finished drinking water released into the DWDS [11,
34]. The data presented in this study show that the disin-
fection step, carried out by chlorine addition in the
DWTPs, can markedly affect the bacterial diversity in
finished drinking water. Our results also indicate that cer-
tain bacterial groups are particularly affected by the chlo-
rine-based disinfection treatment performed in the two
DWTPs, suggesting a differential level of sensitivity to the
disinfection treatment. Further research is clearly needed to
fully elucidate the bacterial ecology of DWTPs, particu-
larly the disinfection step, as it constitutes the final barrier
before drinking water distribution to the consumer’s tap.
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